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Abstract

This work deals with the computation of turbulent buoyant convection ¯ows with thermal strati®cation using the low-Reynolds-

number (LRN) k-x model. When applying the k-e model to buoyancy-driven cavity ¯ows induced by di�erentially heated side walls,

a problem commonly encountered at moderate Rayleigh numbers (Ra� 1010 ± 1012) is that the model is not capable of giving grid-

independent predictions owing to the transition regime along the vertical walls. It was found that the buoyancy source term for the

turbulence kinetic energy, Gk , exhibits strong grid sensitivity, as this term is modelled with the Standard Gradient Di�usion Hy-

pothesis (SGDH). By introducing a damping function into this term, the above grid-dependence problem is eliminated and, ad-

ditionally, the modelled Gk renders correct asymptotic behavior near the vertical wall. The mechanism held in the k-x model for

describing the onset of transition is analyzed. The present approach is simple for practical use and gives reasonable predic-

tions. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Non-isothermal turbulent convection ¯ows are encountered
in many engineering applications, including building ventila-
tion, solar energy collectors, cooling of nuclear reactors and
material processing. This type of ¯ow is either buoyancy-af-
fected or purely driven by buoyancy due to thermal strati®ca-
tion. The well-known buoyancy-driven ¯ow is the natural
convection in an enclosure with two di�erentially heated ver-
tical walls, i.e. the so-called ``cavity ¯ows''.
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Notation

A aspect ratio for cavity, A�H/W
cl, ck , crx model constants
c1, c2, c3 model constants
cf wall friction coe�cient, cf � (H/uT )(ov/ox)w

E height of outlet
fl, fk, f1, f2 damping functions of turbulence models
hin height of inlet
H height of computational domain
k turbulent kinetic energy
Nks shear production of k normalized by the dissi-

pation term
Nkb buoyancy production of k normalized by the

dissipation term
Nu local Nusselt number, ÿ(oT/ox)wH/DT
p pressure
Pr Prandtl number, m/a
Ra Rayleigh number, Pr[gb(Th ÿ Tc)H

3/m2]
Rt turbulent Reynolds number
T temperature
Th, Tc temperatures at heated and cooled walls, re-

spectively
uT velocity scale for cavity ¯ow, [gb(Th ÿ Tc)H]1=2

ui mean velocity components in the xi direction
u0, v0 ¯uctuating velocities in the x and y directions,

respectively

W width of computational domain
xi Cartesian space coordinates (i� 1, 2)

Greek
a thermal di�usivity
b thermal expansion coe�cient
DT temperature di�erence, DT� (Th ÿ Tc)
e dissipation rate of k
ein dissipation rate of k at inlet
l dynamic molecular viscosity
lt turbulent dynamic viscosity
m kinematic viscosity, l/q
mt turbulent kinematic viscosity, lt/q
q density of ¯uid
rk , rz, rT model constants
s turbulent time scale
x speci®c dissipation rate of k
f similarity variable
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Natural convection ¯ows in enclosures usually possess two
distinct patterns: the boundary layers along the walls and the
encircled recirculating motion in the core. In cases with heated
and cooled vertical walls, the laminar air ¯ow at a local
Rayleigh number larger than 109 may be promoted to turbu-
lent transition in the vertical boundary layer (Incropera and
DeWitt, 1990). The transition from laminar to turbulence
causes an increase in the convective heat transfer on wall
surfaces. In the direct numerical simulations (DNS) for air
¯ow in a square cavity, Paolucci and Chenoweth (1989) de-
tected that, at the critical Rayleigh number between 108 and
2 ´ 108, the ¯ow undergoes a Hopf bifurcation to a periodic
unsteady ¯ow. A slightly larger Rayleigh number will make the
¯ow display Tollmien±Schlichting-like waves in the vertical
boundary layer. A further increase of the Rayleigh number will
lead to the high dimensional turbulent state. Henkes and Le
QueÂreÂ (1996) revealed numerically that three-dimensional
perturbations are less stable than two-dimensional perturba-
tions for air-®lled cavity ¯ows and give a lower critical Ray-
leigh number for transition onset. They also showed that the
three-dimensional instability has a combined thermal and hy-
drodynamic nature.

The transitional ¯ow is essentially of a low-Reynolds/Ray-
leigh-number type, which is unsteady and not reproducible. It is
of practical importance to reasonably predict the onset of
transition, for example, in applications of crystal growth and
cooling of nuclear reactors. It is well-known, however, that the
physical transition phenomenon itself is not tractable with a
Reynolds-averaging model, since all the spectra e�ects are lost
in the time-averaging process, and the two-equation models
are capable of distinguishing only the magnitude and an
average frequency of perturbations that fall in a speci®c range
of frequencies of inducing instability. Nevertheless, the LRN
variants of the two-equation models have been widely applied
in recent years for simulating transitional ¯ows, particularly
for predicting the onset of by-pass transition. A moderate
degree of success in such applications has been reported (Sa-
vill, 1996).

An important feature of turbulent natural convection ¯ows
is that turbulence relies signi®cantly on the thermal strati®ca-
tion. A stable strati®cation usually dampens turbulence. For
natural convection ¯ows in a cavity at moderate Rayleigh
numbers, turbulence is fully developed only in some regions
along the vertical walls (the upper part along the heated wall
and the lower part along the cooled wall), and it decays away
from the walls. This thus requires the turbulence models used
in the computation to be able to appropriately capture the
turbulence evolution starting from laminar state so as to ob-
tain reliable heat transfer predictions. The strong interaction
between the thermal and hydrodynamic instabilities requires a
particular e�ort to describe the non-linear growth of distur-
bances that lead the ¯ow from laminar to turbulence.

Over the past ten years, extensive studies have been made
on the buoyancy-driven ¯ows in enclosures through experi-
ments and numerical techniques, because this type of ¯ow is of
interest in both fundamental turbulence research and engi-
neering applications. Experimental work, by e.g. Cheesewright
et al. (1986) and Giel and Schmidt (1986), has often been used
for the validation of numerical computations, which range
from DNS, LES and second-moment closures to two-equation
eddy viscosity models, see e.g. Paolucci and Chenoweth (1989),
Bergstrom and Huang (1997), Davidson (1990a, b) and
Henkes et al. (1991) and Heindel et al. (1994). Among the two-
equation eddy viscosity models, the k-e model and its LRN
variants have been commonly used. Ince and Launder (1989)
introduced the Generalized Gradient Di�usion Hypothesis
(GGDH) to model the heat ¯ux vector. Together with the Yap
correction in the e-equation, this approach is able to give

satisfactory results. Hanjalic and Vasic (1993) proposed an
algebraic heat ¯ux model (AFM), which showed a reasonable
behavior. A brief overview of previous work on the compu-
tations of turbulent natural convection in two-dimensional
enclosures can be found in, e.g., Hanjalic and Vasic (1993). In
general, the inclusion of low-Reynolds-number modi®cations
in the k-e model improves the prediction of wall heat transfer,
as stated by Heindel et al. (1994). However, some problems
have also been reported in a comparative study using the re-
sults from a workshop conducted by Henkes and Hoogen-
doorn (1995). Among others, the solution was found to be
grid-dependent when using the k-e model with the isotropic
eddy di�usivity concept (i.e. SGDH): the transition onset
along the non-adiabatic vertical wall is delayed as a result of
re®ning grid, and eventually returning an unrealistic laminar
solution.

Wilcox (1994) developed an LRN k-x model for transition
simulation. Unlike the approach usually used for by-pass
transition by di�usion of free-stream turbulence into the ¯ow,
a method called numerical roughness strip was introduced to
trigger transition at a speci®ed location. This method is es-
sentially a point transition approach in which the location of
transition onset needs to be empirically established. This
model was applied to a series of transitional boundary layer
¯ows, and realistic simulations were reported. To improve the
predictions for internal low-Reynolds-number recirculating
¯ows, a modi®ed form of this model was proposed by Peng
et al. (1997). Both Wilcox's model and the modi®ed model
preserve the mechanism for transition simulation of isothermal
boundary layer ¯ows as described by Wilcox (1994). For tur-
bulent natural convection ¯ows, however, the behavior of
these two models remains unclear. It therefore provides mo-
tivation to investigate the performance of these models for
¯ows in which the turbulence is promoted from laminar state
by both shear and thermal strati®cation.

In this work, the two aforementioned LRN k-x models are
used for predicting thermally strati®ed turbulent ¯ows in en-
closures. The in¯uence of thermal strati®cation on the turbu-
lence evolution is investigated. Emphasis is put on the
prediction of transition onset in the boundary layer along the
vertical heated/cooled wall. The behavior of the LRN k-x
model is analyzed for predicting transition. By using a dam-
ping function for the buoyant source term in the k-equation,
together with the simple SGDH approach, the grid-depen-
dence problem for transition prediction is removed, and the
grid-independent solution can be asymptotically achieved with
successively re®ned grids. The present approach has been ap-
plied to a buoyancy-driven natural convection ¯ow at
Ra � 5 ´ 1010 in a rectangular cavity and to a mixed con-
vection ¯ow in a square enclosure with unstable thermal
strati®cation. For comparison, two LRN k-e models by Abe
et al. (1994) and by Lam and Bremhorst (1981) are also used.
The results have been compared with experimental data.

2. Turbulence models

2.1. Model equations

To describe the evolution of the turbulence ®eld and de®ne
the turbulent scales, an equation for turbulence energy is often
used when using Reynolds-averaging two-equation models.
For steady ¯ows, the transport equation for turbulent kinetic
energy, k, is written as

o�qujk�
oxj

� Pk ÿPk � o
oxj

l� lt

rk

� �
ok
oxj

� �
� Sk ; �1�
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where the right-hand side terms are the production, the dissi-
pation, the di�usion and an additional source term, respec-
tively. In the context of two-equation turbulence modelling, an
extra equation is required to construct the eddy viscosity, lt. In
analogy to the k-equation, this equation is cast into a general
form as

o�qujz�
oxj

� Pz ÿPz � o
oxj

l� lt

rz

� �
oz
oxj

� �
� Sz: �2�

The right-hand side of Eq. (2) is termed in a way analogous to
those in Eq. (1). In this study, two types of LRN models were
used, i.e. the k-e model and the k-x model. Eq. (2) then turns
out to be a transport equation for e or x. The eddy viscosity in
the k-e model is de®ned as

lt � clfl
qk2

e
: �3�

In the k-x model, it is expressed as

lt � clfl
qk
x
: �4�

The production term in the k-equation, Pk , is modelled by
assuming that the turbulent Reynolds stresses are in alignment
with the strain rate tensor, Sij� (oui/ouj+ouj/oui)/2. This gives

Pk � 2ltSij
oui

oxj
� lt

oui

oxj
� ouj

oxi

� �
oui

oxj
: �5�

The two LRN k-e models used in this work are the Abe±
Kondoh±Nagano (AKN) model (1994) and the Lam±Brem-
horst (LB) model (1981), and the LRN k-x models are the
Wilcox (WX) model (1994) and a model by Peng, Davidson
and Holmberg (PDH) (1997). The terms appearing in Eqs. (1)
and (2) are given in Table 1.

The source term in the k-equation, Sk , is due to the buoy-
ancy, which represents the exchange between potential energy
and turbulent kinetic energy. This term is associated with the
turbulent heat ¯ux in the vertical direction, reading

Gk � qgbu0jT 0d2j: �6�
Several sophisticated options can be used to model this term,
e.g. the GGDH model by Ince and Launder (1989) and the
AFM approach by Hanjalic and Vasic (1993). For its sim-
plicity, the SGDH model remains most widely used in engi-
neering applications, giving

Gk � ÿgb
lt

rT

oT
oxj

d2j: �7a�
The GGDH model represents the vertical heat ¯ux by in-
cluding a horizontal temperature gradient in the presence of
shear. It reads

Gk � ÿchgb
1

x
2ltS2j ÿ 2

3
d2jqk

� �
oT
oxj

: �7b�
Depending on the thermal strati®cation, the buoyant source
term in the k-equation either enhances turbulence (as a pro-
duction term) or dampens turbulence (as a destruction term).

For convenience, this term is termed here buoyancy produc-
tion in cases of both stable and unstable thermal strati®cation,
unless otherwise stated.

An extra term in the PDH model is included in the x-
equation. This term is the turbulent cross-di�usion term (Peng
et al., 1997) and is expressed as

Cx � crx
lt

k
ok
oxj

ox
oxj

: �8�

The buoyancy source term in the e- or x-equation can readily
be derived from dimensional analyses, as shown in Table 1.
Note that the speci®c dissipation rate, x, is a reciprocal of the
turbulent time scale, i.e. x � 1/s. Eqs. (3) and (4) indicate that
x � e/k. This suggests that Dx/Dt� (1/k)De/Dt ÿ (x/k)Dk/
Dt. Using this relation, the buoyancy term in the x-equation
can be shown to have the form of �ce3 ÿ 1��x=k�Gk . In ac-
cordance with Rodi's arguments (Rodi, 1984), ce3 is close to
unity in the vertical boundary layer and close to 0 in the
horizontal boundary layer. Henkes et al. (1991) proposed
using ce3 � tanh jv=uj to satisfy this argument for computing
turbulent cavity ¯ows. Other constant values, ranging from 0.8
to 1.5, have been used for ce3 by di�erent researchers, see e.g.
Hanjalic and Vasic (1993) and Murakami et al. (1996). Mar-
katos et al. (1982, 1984) stated that there is evidence that the
buoyancy e�ect should be re¯ected only in the k-equation.
Heindel et al. (1994) also detected a negligible e�ect of con-
stant ce3 in the calculations of cavity ¯ows. Based on the re-
lation of cx3 � �ce3 ÿ 1�, the e�ect of cx3 was investigated in
this work by employing values from ÿ0.3 to 1.0 for cavity
¯ows. Indeed, the prediction appears to be insensitive to this
constant. As a consequence, in the present calculations, cx3 is
set to zero for both the WX and PDH models. The closure
constants are summarized in Table 2. The damping functions,
fl, fk , f1 and f2, for di�erent models are given in Appendix A.

2.2. Transition Regime

At a moderately high Rayleigh number, the natural con-
vection boundary layer ¯ow along a non-adiabatic vertical
wall of an enclosure, e.g. the heated wall, usually undergoes
three stages: the laminar ¯ow near the lower left corner, and
the subsequent transitional and turbulent ¯ows. The transition
onset can be observed through the convective heat transfer
over the wall surface, in which a sudden jump occurs. The
LRN k-e model, as well as the standard k-e model, usually
predicts a delayed transition regime when re®ning the grid.
Using the standard k-e model, by triggering transition in the
boundary layer with a prescribed amount of kinetic energy,
Henkes and Hoogendoorn (1995) found that this grid-depen-
dence problem can be removed. This approach, however, over-
predicts the average wall heat transfer. Moreover, introducing
prescribed turbulence into a con®ned system might be unre-
alistic. Using the LRN k-x models in this study, delayed
transition predictions were also detected by successively
re®ning the grid from 60 ´ 60 to 160 ´ 160. A possible ex-

Table 1

Terms in turbulence models used in this work

Models LB model AKN model WX model PDH model

Pk qe qe ck fk q x k ck fk q x k

Sk Gk Gk Gk Gk

Pz c1 f1(e/k) Pk c1 f1(e/k) Pk c1 f1(x/k) Pk c1 f1(x/k) Pk

Pz c2 f2 q e2/k c2 f2 q e2/k c2 q x2 c2 q x2

Sz c3 (e/k) Gk c3 (e/k) Gk c3 (x/k) Gk c3 (x/k) Gk + Cx
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planation on this uncertainty may be attributed to the mech-
anism for predicting transition onset preserved in the k-x
model, which is originally subjected to forced convection
boundary layer ¯ows.

Comparing to isothermal ¯ows dominated by shear or
pressure gradient, buoyancy-driven ¯ows possess one further
turbulence evolution mechanism due to thermal strati®cation
as represented by the buoyancy-related term, Gk , in the k-
equation. The unknown correlation in Gk re¯ects the interac-
tion between the ¯uctuating velocity and temperature ®elds. If
Gk is modelled, say, with the SGDH or the GGDH approach,
this term can be written in a general form

Gk � gbv0T 0 � mtF x;
oui

oxj
;
oT
oxj

� �
; �9�

where F is a function of x and the gradients of velocities and
temperature.

For an incompressible, two-dimensional natural convection
boundary layer ¯ow along a vertical heated wall, in analogy to
Wilcox's analysis (Wilcox, 1994), the net production per unit
dissipation term for k and x, Nk and Nx, can be written as,
respectively,

Nk � clfl

ckfk

ov=ox
x

� �2

� F
x2

" #
ÿ 1; �10�

Nx � clfl

c2

c1f1

ov=ox
x

� �2

� c3

F
x2

" #
ÿ 1: �11�

Since the x-equation has a well-behaved solution as k � 0, the
ampli®cation or reduction of k and x in magnitude can thus be
determined with the sign changes of Nk and Nx. To ensure
transition to occur from laminar to turbulence, k must be
ampli®ed earlier than x (transition will otherwise never occur).
It is thus necessary to have Nk > Nx P 0. Consequently, this
requires, as Rt ! 0.

1

ckfk
ÿ c1f1

c2

� �
ov=ox

x

� �2

� 1

ckfk
ÿ c3

c2

� �
F
x2

> 0: �12�
For isothermal boundary layer ¯ows, F� 0, Eq. (12) is thus
satis®ed by simply taking

c1f1ckfk < c2 as Rt ! 0: �13�
Eq. (13) holds true in both the WX model and the PDH
model. For natural convection boundary layer ¯ows, this
condition is no longer su�cient because the turbulent heat ¯ux
contributes to the net productions. As argued above, the
model constant c3 has been set to zero. To trigger transition,
the ampli®cation of k depends on both the normalized pro-
duction due to shear, Nks�CNk [(ov/ox)/x]2 with CNk � clfl/ckfk ,
and the normalized production due to buoyancy, Nkb�CNkF/
x2.

For isothermal boundary layer ¯ows (F� 0), Wilcox (1994)
showed that Nk and Nx increase linearly with local Reynolds
number along the surface. Through an argument of model

constants, k is forced to grow starting from laminar ¯ow at the
minimum critical Reynolds number (Recr � 9 ´ 104) at which
the Tollmien±Schlichting waves begin to form in the Blasius
boundary layer. For natural convection boundary layer ¯ows
along the heated/cooled vertical walls in an enclosure, DNS
results by Paolucci and Chenoweth (1989) and by Le QueÂreÂ
(1992) reveal that Tollmien±Schlichting-like waves occur at a
Rayleigh number larger than 2 ´ 108. This seems to suggest
that the free convection boundary layer ¯ow possesses be-
havior similar to the Blasius boundary layer, of causing tran-
sition to turbulence. However, the mechanism held in the k-x
model for transition simulation is quantitatively questionable
when F 6� 0, as shown in Eqs. (10) and (11). Two uncertain
points arise. First, the addition of the buoyancy term in the k-
equation could not ensure that k is ampli®ed before x as F < 0
for stable thermal strati®cation where oT/oy > 0. Second, be-
cause the buoyancy term interferes with the net production of
turbulence energy, Nk , it cannot guarantee that k starts to
grow at the critical Ra number where the secondary instability
occurs, e.g. Racr � 2 ´ 108 for 2D cavity ¯ows as revealed in
DNS. This is essential for accurately predicting the location of
transition onset.

The k-x model has an important feature to enable an an-
alytical observation on the ¯ow change-over from one state to
another as transition occurs. That is, the x-equation uncouples
from the k-equation as k� 0, giving a nontrivial laminar so-
lution for x. To further reveal how the transition-onset occurs
in response to the model behavior at a certain Rayleigh
number, a more comprehensive analysis can be made by a
similarity transformation of Eqs. (10) and (11). It should be
noted that the analysis is started from laminar state and ended
up with the change-over of the ¯ow state where the local
production of k su�ciently overwhelms its local dissipation
and transition occurs.

According to Henkes (1990), the quantities H,
DT� (Th ÿ Tref ) and uT � (gbDTH)1=2 are appropriate scalings
for y, T and v, respectively. Here, Tref is a reference tempera-
ture (e.g. Tref �Tc for cavity ¯ow). Further, a similarity vari-
able, f, is used for the following transformation of Eqs. (10)
and (11) (White, 1974; Cebeci and Khattab, 1975) and

f � u2
T

4m2Hy

� �1=4

x: �14�

Note that x is normal to the vertical wall, and y is the
streamwise direction along the wall. With this similarity vari-
able and the above scalings, v and T are then written in terms
of f, i.e.

v � uT V �f�; �15�
T � DTH�f�: �16�
By means of the asymptotic solution of x, x / 1=x2 as x! 0,
x can be expressed as

Table 2

Model constants

Constants cl ck c1 c2 c3 rk rz rT crx

LB model 0.09 ± 1.44 1.92 tanhjv/uj 1.0 1.3 0.9 ±

AKN model 0.09 ± 1.50 1.90 tanhjv/uj 1.4 1.4 0.9 ±

WX model 1.0 0.09 0.56 0.075 0.0 2.0 2.0 0.9 ±

PDH model 1.0 0.09 0.42 0.075 0.0 0.8 1.35 0.9 0.75
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x � u2
T

4Hy

� �1=2

X�f�: �17�
The SGDH approach in Eq. (7a), which gives
F � ÿ�gb=rT � � �@T=@y�, is used to model the buoyancy term
Gk . Setting c3� 0 and using Eqs. (14)±(17) in Eqs. (10) and
(11) yield, respectively,

Nk � clfl

ckfk
2

Ra

Pr

� �1=2 y
H

� �1=2 oV =of
X

� �2
"

� f
rT

� �
oH=of

X2

� �#
ÿ 1; �18�

Nx � clflc1f1

c2

2
Ra

Pr

� �1=2 y
H

� �1=2 oV =of
X

� �2
" #

ÿ 1: �19�

A dramatic ampli®cation in k (starts as Nk changes its sign to
positive) indicates the onset of transition, whereafter the am-
pli®cation of x controls the width of transition. Note that the
turbulence energy starts to grow as the ®rst term in Eq. (18)
reaches unity. Somewhere after this point, the eddy viscosity
suddenly increases and the transition from laminar to turbu-
lence occurs. At the onset position of transition, this suggests

k1

Ra

Pr

� �1=2 y
H

� �1=2

tr
� k2 � a0 �a0 > 1�; �20�

where

k1 � 2clfl

ckfk

oV =of
X

� �2

; k2 � clfl

ckfkrT

foH=of

X2

� �
: �21�

In Eqs. (20) and (21), k1 and k2 are functions of the similarity
variable, f. As the transition occurs, the position (height) of
transition onset, ytr, can thus be estimated by solving Eq. (20)
for (y/H)tr. This gives

ytr � Pr

Ra

� �
a0 ÿ k2

k1

� �2

H : �22�
Note that a0� (Nks + Nkb)max is the maximum total production
per unit dissipation as transition occurs. Eq. (22) shows that
the height of laminar-turbulent transition along a vertical
heated wall decreases with an increasing Rayleigh number. For
buoyant ¯ows in a square cavity, Henkes (1990) used Chien's
LRN k-e model (Chien, 1982) to numerically reveal the de-
pendence of ytr on Ra. It was shown that ytr tended to be zero
as the Rayleigh number was up to 1017. Eq. (22) suggests that
an appropriate prediction of ytr depends on the model be-
havior of simulating k1, k2 and a0 when the ¯ow approaches
transitional state from laminar. Usually, k1 reaches its maxi-
mum value somewhere near the velocity peak in the boundary
layer, where jk2j is often rather small due to near-wall large x,
having jk2j � 1 < a0.

To ensure the occurrence of transition, two essential con-
ditions should be emphasized. First, the net production Nx

should not reach zero earlier than Nk . Second, the value of a0

should be raised to a certain level in the boundary layer. With
unstable thermal strati®cation, the buoyant source term in the
k-equation usually contributes to the enhancement of the level
of a0. For stable thermal strati®cation, by contrast, this term is
often negative as modelled with the SGDH. To raise a0 to be a
positive value and much larger than unity, it thus relies solely
on the shear production, whose maximum value often arises in
the near-wall boundary layer whereas the buoyancy produc-
tion is usually negligibly small (Davidson, 1992). This, how-
ever, by no means suggests a negligible role played by the
buoyancy-related term. In the neighboring outer region of the
boundary layer this term can be relatively high with negative

values, behaving as a energy destruction term. In contrast to
the by-pass transition where the freestream turbulence is dif-
fused into the boundary layer, in this case the turbulence en-
ergy generated by shear in the boundary layer may be diverged
to the outer region in which the energy destruction is rein-
forced by the buoyant source term. Such a modelling feature
may deter a0 from reaching a desired level to trigger transition.
The model will consequently predict a delayed transition or
even an unrealistic laminar solution. Special care must then be
taken of the buoyant source term in the outer region neigh-
boring to the boundary layer.

Indeed, there is evidence that the aforementioned grid-de-
pendence of the transition prediction is related to the buoy-
ancy-generated source. This can be veri®ed by dropping the
buoyancy term in the k-equation. It was found that this ex-
clusion can rid the model of the grid-dependent behavior, but
the heat transfer is largely over-predicted as compared with
experiments and the turbulence energy in the core region is not
su�ciently dampened as desired. This implies that a simple
exclusion of Gk is not acceptable. Since the buoyant source
term tends to suppress turbulence in stable thermal strati®ca-
tion, an inclusion of this term is thus preferable. On the other
hand, Gk must then be appropriately modelled, because the
ampli®cation of the local k production in the near-wall
boundary layer is associated with this term. If the turbulence in
the neighboring outer region is over-suppressed (through Gk

with negative sign), the ampli®cation of the near-wall shear
production may be slowed down by di�usion of turbulence
energy towards the outer region so as to compensate for the
stabilization there. This will consequently delay the transition
onset, or even cannot sustain the turbulence evolution in the
boundary layer, and retaining the ¯ow in laminar state.

To remove this undesired behavior induced due to thermal
strati®cation, measures must be taken to control the perfor-
mance of the buoyant source term, Gk . It should be noted that
more sophisticated models, e.g., the GGDH model (Ince and
Launder, 1989) and the AFM approach (Hanjalic and Vasic,
1993), can be used to approximate this term. These two models
were applied in the original work to the same cavity ¯ow
as considered in this work. There was no grid-dependence
problem reported as such identi®ed here when using LRN two-
equation models together with the SGDH approach. The
rationale now seems clear: models that approximate Gk in such
a way that the normalized production (and thus a0) in the
boundary layer keeps growing can remove the above problem
and lead the ¯ow from laminar to turbulence. Indeed, Da-
vidson (1992) showed that Gk is even positive in the outer re-
gion when using the GGDH model while it is negligibly small
in the near-wall region comparing to other terms. Using the
AFM, Hanjalic and Vasic (1993) stated that Gk is usually less
than one-third of the shear production in the outer layer. This
implies that the shear production itself in the outer layer has
the capability to compensate for the energy destruction with-
out extra turbulence di�usion from the inner region. We be-
lieve that such modelling features inherent in the GGDH and
AFM approaches may, to some extent, bring about the success
in avoiding the grid-dependence problem as in the present
consideration. Although these two approaches are not in-
cluded in the following computations, it can be shown that the
predictions given by the present simple approach are actually
very similar to the results produced by the GGDH and AFM
methods.

Since the grid-dependence problem is encountered when
using the SGDH, which has so far gained the greatest popu-
larity in practical applications for its simplicity, the SGDH
model is thus the main consideration to overcome the problem
inherent in this approach. For this purpose, a practical way is
to use a damping function that is able to appropriately deter
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the buoyant source term in the outer region from absorbing
too much energy powered by the near-wall shear production.
Furthermore, the method of using a damping function for Gk

is supported by an asymptotic analysis near the vertical wall:
using the SGDH approach, Eq. (7a), gives rise to an incorrect
asymptotic behavior for the modelled Gk . Near the vertical
wall, v0 / x, T 0 / x (cf. So and Sommer, 1994). The exact
buoyancy source term is thus proportional to x2 as x! 0.
Since lt / x3 for the PDH model, and lt / x4 for the WX
model, with oT=oy / x0 as x! 0, the modelled Gk term then
has a relation of Gk / x3 for the former and of Gk / x4 for the
latter. Note that the GGDH approach also renders incorrect
asymptotic behavior near the vertical wall.

The devised damping function, fG, is employed in the PDH
model, having fG / 1=x as x ® 0. Note that the use of a
damping function will give an incorrect asymptotic behavior
for Gk near a horizontal wall (for models with lt / y3), where
v0 / y2 as y ® 0, but this is of no signi®cant consequence since
the ¯ow along the vertical walls is dominant in an overall
fashion for ¯ows induced by heated/cooled vertical walls. The
role played by the damping function is mainly to constrain the
turbulence destruction due to buoyancy and thus to suppress
the turbulence energy di�usion from the boundary layer to the
neighboring outer region so as to avoid delayed prediction of
transition onset as analyzed above, and additionally, to obtain
correct asymptotic behavior for Gk near the vertical wall. This
function was devised as

fG � 1ÿ exp ÿ Rt

cg

� �3
" #( )

� 1� 10

R3:25
t

� �
; �23�

where cg � 12, which is numerically optimized. By using this
damping function together with the PDH model (hereafter
PDH+D), as shown in the next section, the grid-dependence
problem can be eliminated. The buoyancy source term in the k-
equation is thus modelled as

Gk � ÿgbfG
lt

rT

oT
oxj

d2j: �24�
The buoyancy production (normalized by the dissipation
term), Nkb, is often rather small in the boundary layer. The
transition onset from laminar to turbulence therefore relies
strongly on the shear production (through a0 and k1).

It should be pointed out that the above analysis can also be
expected to be applicable for the WX model and for LRN k-e
models by transforming the e-equation into an x-equation
with the relation of e � kx (see Peng, 1998). The proposed
approach is applied, however, only to the PDH model in this
study for veri®cation.

3. Solution procedure

The above LRN models have been applied to two non-
isothermal convection ¯ows: the turbulent buoyancy-driven
¯ow in a rectangular cavity with A� 5, for which the experi-
ment was made by Cheesewright et al. (1986); and the turbu-
lent mixed convection ¯ow in a square enclosure with a heated
bottom wall, as in the Blay et al. experiment (Blay et al., 1992).

All the computations have been performed on the basis of
the Boussinesq assumption. The air properties are evaluated at
a reference temperature: the density is calculated from the gas
law, and the dynamic viscosity is calculated by using the
Sutherland formula.

The ®nite volume method is used to discretize the partial
di�erential equations on a collocated grid (Davidson and
Farhanieh, 1992). The QUICK scheme is employed for the
convection terms in the momentum equations and in the

thermal energy equation, and the convection term in the tur-
bulence transport equations is discretized by using the hybrid
upwind-central scheme. In order to verify that the low nu-
merical accuracy in the turbulence-convection discretization
has not contaminated the prediction of transition, a second-
order accurate bounded scheme by van Leer (van Leer, 1974)
was also employed to discretize the turbulence-convection
term. The resulting predictions, however, were found to be
nearly identical to those obtained with the hybrid scheme, and
the model eventually renders a laminar solution with re®ning
grid for the cavity ¯ow when not using the damping function in
Gk . This seems to imply that the grid-dependence problem in
the present transition prediction is not rooted in the numerical
accuracy of the turbulence-convection scheme.

To account for the velocity-pressure coupling, the
SIMPLEC algorithm is applied. The resulting algebraic equa-
tions for velocity components and turbulence quantities are
solved iteratively with a line-by-line TDMA solution proce-
dure, and the Strongly Implicit Procedure (SIP) is used to solve
the pressure-correction equation. Steady state solution is
obtained by using under-relaxation technique and a false time
step to ensure a stable solution procedure.

The use of LRN models requires a su�cient number of grid
points in the near-wall boundary layer. Special attention has
thus been paid to the grid re®nement, particularly for com-
puting the buoyancy-driven cavity ¯ow. Non-uniform grid has
been used in all the calculations, with the grid clustered in the
near-wall region to resolve the wall-damping e�ect.

The low-Reynolds-number modi®cations allow the turbu-
lence model to be integrated directly towards the wall surface,
without using wall functions as a bridge. On the wall surface,
the boundary values for u, v and k were set to zero, while the
temperature, as well as the inlet conditions in the mixed con-
vection case, was speci®ed in accordance with experiments.

Neumann boundary conditions were used for all the vari-
ables at the outlet. With both the LB and the AKN k-e models,
the wall condition for e was speci®ed as

ew � 2m
o
���
k
p

on

 !2

w

: �25�

This relation was derived from a balance of the k-equation in
the viscous sublayer by using a Taylor series expansion (To
and Humphrey, 1986). By means of a similar balance for the
x-equation, an asymptotic expression for x as the wall is ap-
proached can be obtained (Wilcox, 1994)

x � 6m
c2y2

as y ! 0: �26�
Eq. (26) is employed for calculating x at the ®rst grid point
close to the wall surface.

4. Results and discussion

The results computed with various turbulence models are
presented in this section, and are discussed through compari-
son with experimental data.

4.1. Natural convection in a rectangular cavity

Various cavity con®gurations have been used in previous
experimental and numerical work. Henkes and Hoogendoorn
(1995) proposed in a Eurotherm Workshop the use of a square
enclosure as the benchmark test case. In their comparison
study using the workshop results, they showed that the results
for cavities with aspect ratios of 1 and 5 (at nearly the same
Rayleigh number) are very close only if they are scaled by the
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cavity height. Hanjalic and Vasic (1993) found that the pre-
diction is more erroneous for the ¯ow in a tall cavity with an
LRN k-e model than for the ¯ow in a square or lower-aspect
ratio cavity with the same LRN model. For a direct compar-
ison with experimental data, the ¯ow in a rectangular enclo-
sure with an aspect ratio of A� 5 was computed. The Rayleigh
number is about 5 ´ 1010 with Th� 77.2 and Tc� 31.4. The
horizontal walls are assumed to be adiabatic.

When using the LRN k-e model, the computation needs to
be started with some initial turbulence. It was found that the
LB model and the AKN model may give a laminar solution
with both 60 ´ 60 and 80 ´ 80 grids unless the initial values of
k and e are speci®ed in such a way that the initial eddy viscosity
is about 100 times higher than the molecular one. This was also
observed by Hanjalic and Vasic in their previous computations
(Hanjalic, Private communication, 1997). However, such an
initial speci®cation does not lead to a turbulent solution when
using a ®ner grid, e.g. 160 ´ 160, at which the model always
eventually returns a laminar solution even though a rather
high initial value was given to k. With a grid of 120 ´ 120, the
AKN model was observed to ®rst give turbulent solution, but
this solution did not sustain as further iterations were per-
formed. This phenomenon may be attributed to the non-
uniqueness of the transition, as explained by Henkes et al.
(1991), the model has a bifurcation point at Racr.

With the LRN k-x models, a very small initial value, e.g.
10ÿ10, was speci®ed for both k and x. This initial speci®cation
is able to give a turbulent solution with a grid re®ned to, e.g.,
120 ´ 120. Note that this in fact implicitly sets a rather high
initial turbulent Reynolds number, Rt� k/mx. It was found
that the WX model and the PDH model also rendered a
laminar solution if a small initial turbulent Reynolds number
was set by specifying either a smaller initial value of k or a
larger x. Using both the WX and PDH models, we also tried
to start the computation with a laminar solution for u, v and x

with a very small initial k value (e.g. 10ÿ10), but the solution
remained in laminar stage. This laminar solution was kept even
when a numerical roughness strip, as proposed by Wilcox
(1994) to trigger transition in forced convection boundary
layer ¯ows, was speci®ed around the transition regime. This
seems to indicate that the numerical-roughness-strip approach
does not work for the present case.

It is desired to attain an asymptotically grid-independent
solution by means of re®ning grid. The grid used in this study
was successively re®ned from 60 ´ 60, 80 ´ 80, 100 ´ 100,
120 ´ 120, 160 ´ 160 to 180 ´ 180. All the models turn out to
be strongly sensitive to grid re®nement.

Fig. 1 shows that the predicted onset of transition along the
vertical wall is delayed with re®ned grids. As with the LRN k-e
model, the two LRN k-x models also give grid-dependent
predictions, see Fig. 1(c) and (d), although the delay is rela-
tively slow. By re®ning the grid further, it can be expected that
these two models will ®nally return a laminar solution, as the
LRN k-e model does. The shift of transition with re®ning grids
suggests a delayed ampli®cation of local turbulence produc-
tion, though this ampli®cation has occurred before dissipation
is ampli®ed (on a coarser grid). Re®ning the grid seems to
increase the ampli®cation rate for the dissipation and eventu-
ally, the ampli®cation of local turbulence production may be
overwhelmed by the local dissipation. Moreover, it was found
that all the models used here give reasonable k-distributions
(not shown here) as compared with the experimental data
provided that they predict the transition onset at ytr/H� 0.3 ±
0.4 (along the hot wall) with a certain grid. However, this
position does not agree with the experimental result. Bowles
and Cheesewright's experiment (Bowles and Cheesewright,
1989) gave ytr/H � 0.22. An earlier transition (ytr/H < 0.3)
predicted by a model corresponds in general to a lower pre-
diction of the k-peak downstream of the transition regime in
the boundary layer. The contradiction between the prediction

Fig. 1. Grid-dependence of the solution: Nusselt number, Nu, along the vertical wall. (± ± ±) Grid 60 ´ 60, (á á á á á á á á á) Grid 80 ´ 80, (±±±) Grid

120 ´ 120, (- � - � -) Grid 160 ´ 160, (D) Experiment (hot wall), (}) Experiment (cold wall). (a) AKN model, (b) LB model, (c) WX model, (d) PDH

model.
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and the experiment may possibly be due to the heat loss
through the horizontal walls in the experiment, as stated by
Cheesewright et al. (1986). The heat loss may have a�ected the
measured position of transition onset along the vertical wall.

When using the PDH + D model, the computed convective
heat transfer along the heated vertical wall is given in Fig. 2(a),
and the k-distribution at the mid-section (y�H/2) is shown in
Fig. 2(b). By re®ning the grid successively from 80 ´ 80 to
180 ´ 180, an asymptotically grid-independent solution is
achieved. This indicates that the use of a damping function, fG,
in Gk does prevent the model from being grid-dependent in
transition prediction. Again, the lower k-peak is related to the
predicted location of transition regime, which is however in
reasonable agreement with the prediction using the AFM ap-
proach by Hanjalic and Vasic (1993). When using the PDH+D
model, all the results shown below were obtained with a grid of
160 ´ 160, where the solution can be regarded as being grid-
independent, as disclosed in Fig. 2.

Fig. 3(a)±(c) gives the distributions, computed with the
PDH+D model, for the mean velocity, temperature and tur-
bulent shear stress at y� H/2. Also shown in Fig. 3(d) is the
friction coe�cient along the vertical walls. As seen, the results
are in satisfactory agreement with the experimental data.

The in¯uence of the constant cg in the damping function fG

was also investigated. It was found that the prediction of
transition onset is rather sensitive to the value of fG. A smaller
cg, i.e. a larger fG, makes the model predict a later transition.
This observation con®rms the above analysis that the buoyant
source term, as modelled with the SGDH, tends to slow down
the turbulence evolution in the boundary layer and delay the
transition onset.

To investigate the di�erent roles played by the shear
production and the buoyancy production in the k-equation, it
is desirable to compare their respective contribution to the
turbulence evolution in the boundary layer as transition oc-
curs. The budget for the k-equation in the PDH + D model is
given in Fig. 4 at location y� 0.3H, which corresponds to the
predicted onset position of the transition regime along the
heated wall. The k-budget at y�H/2 was also investigated
(not shown here), indicating that the balance of the k-equa-
tion in the boundary layer downstream of the transition re-
gime is sustained mainly by the shear production, the
dissipation and the di�usion. Moving to the location of
transition onset (at y� 0.3H), as shown in Fig. 4, the con-
vection term becomes also signi®cant in the balance, because
the turbulence energy grows rapidly as approaching to this
stage. In the outer region away from the boundary layer, all
the terms become so small that it is di�cult to distinguish
their separate functions in triggering transition at the post-
laminar stage.

As argued above, one of the essential conditions to trigger
laminar-turbulent transition is that the total production per
unit dissipation term for k due to shear and buoyancy, i.e.
(Nks + Nkb), must grow over unity before transition occurs.
Moreover, the turbulent kinetic energy must be ampli®ed
earlier than its dissipation. Instead of using the direct budget
comparison, a reasonable way is then to compare the dissi-
pation-term-normalized productions, Nks and Nkb, near the
position where transition occurs. In Fig. 5(a) and (b), such a
comparison is made for the PDH model. Because this model is
sensitive to the grid density, the distributions obtained with
two grids, 120 ´ 120 and 160 ´ 160, are used to observe the
in¯uence of re®ning grid. With a 120 ´ 120 grid, the model
predicts a transition onset at y � 0.38H and gives reasonable
predictions for the other variables. At this grid level, the
normalized production due to shear, Nks, grows in the near-
wall layer up to a maximum value of about 5.2 (at
x/W� 0.0164, f� 1.54), whereas Nkb is about ÿ0.00175. This
gives a0� (Nks + Nkb)max � 5.2 as transition starts. In the
neighboring outer region, by contrast, Nkb is negatively dom-
inant over Nks and its absolute value is much larger than the
maximum Nks in the near-wall layer. If the maximum numer-
ical value of k1 in the boundary layer (�3.2 ´ 10ÿ5) and the
corresponding value of k2 there (�ÿ1.75 ´ 10ÿ3) are used in
Eq. (22), it gives ytr � 0.38H (Pr� 0.72 for air). This is iden-
tical with the predicted location of transition onset. When the
grid is re®ned to 160 ´ 160, the normalized production, Nkb, at
the position y � 0.38H, where the transition occurs for a
120 ´ 120 grid, decreases rapidly to large negative values in the
outer region, and Nks is brought down with a maximum value
of about 1.9 in the inner layer at x/W� 0.0325, see Fig. 5(a).
Note that no transition occurs at this position with a 160 ´ 160
grid. Instead, the predicted transition shifts to ytr � 0.63H
with this grid, as shown in Fig. 1(d). The result in Fig. 5
suggests that a ®ner grid may over-amplify the buoyant source
term in the neighboring outer region and bring down the shear

Fig. 2. Predictions using the PDH + D model with re®ned grids.

(á á á á á á á á á) Grid 80 ´ 80, (- � - � -) Grid 120 ´ 120, (±±±) Grid

160 ´ 160, (± ± ±) Grid 180 ´ 180. (a) Nusselt number, Nu, along the

vertical wall. (b) Turbulence kinetic energy, k, at section y�H/2.
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production in the boundary layer. As a result, the transition
onset is delayed.

On the one hand, the turbulence growth in the boundary
layer relies solely on the shear production. The use of damping
function fl will in general delay the transition onset, as shown
by Eqs. (21) and (22) where jk2j � 1 near the vertical wall. On
the other hand, the turbulence energy is di�used from the near-
wall layer to the neighboring outer region, and is ``absorbed''
owing to the stable thermal strati®cation and the stabilization
function of the horizontal boundary layers. An appropriate
equilibrium between the near-wall production ampli®cation
and the outer-region energy destruction is thus needed to make
the model reasonably represent the transition onset. The result
in Fig. 5 indicates that the SGDH as used in the PDH model
has over-ampli®ed the buoyant source term, Gk , in the neigh-
boring outer region before transition occurs. This over-esti-
mation is so large (negatively) that the capability of the shear
production in the boundary layer is not large enough as a re-
source to di�use energy towards the outer region in order to
balance the energy destruction there (due to mainly the
buoyancy-related term and partly the dissipation term). This is
re¯ected by the fact that the normalized buoyant production in
the outer region (with negative value) is much larger than the
normalized shear production in the boundary layer (with
positive value). Since the energy destruction in the outer region
cannot be ``saturated'' by di�usion of turbulence energy from
the near-wall layer, the turbulence evolution in the boundary
layer will not go further. Consequently, the value of a0 in
Eq. (22) is deterred from growing to a certain level to trigger
transition at a desired location. It is interesting to note that the
over-ampli®cation of Gk is reinforced for re®ning grid. The
®ner the grid is, the more is the over-estimation of Gk and thus
the more the shear production is reduced. With a su�ciently
re®ned grid, the shear production in the near-wall boundary
layer is reduced to a level at which the ampli®cation rate of
turbulence energy becomes slower than that of the dissipation
rate. The near-wall shear production is eventually not able to

sustain a continuous ampli®cation of k so as to bring a change-
over of the ¯ow state. By contrast, the ampli®cation of dissi-
pation is continued. As long as the local dissipation
overwhelms the local production, the k-equation goes to a new
balance with a very large x and a very small k. The model
eventually returns a laminar solution, and no transition will
arise at all.

In Fig. 6(a) and (b), the normalized productions are com-
pared for the PDH+D model at the transition onset location

Fig. 3. Predictions using the PDH+D model. The line is for the prediction and the symbols for the experimental data. (D) Hot wall, (}) Cold wall.

Fig. 4. Contributions of di�erent terms in the k-equation for the

PDH+D model at y� 0.3H. (± ± ±) Convection, (±±±) Shear produc-

tion, (á á á á á á á á á) Buoyancy production, (- � - � -) Dissipation, (- � �-)
Di�usion.
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(ytr � 0.3H) predicted by this model on a 160 ´ 160 grid. Note
that this location is a grid-independent prediction. Fig. 6(a)
shows that jNkbj is signi®cantly reduced in the neighboring
outer region of the boundary layer by means of the damping
function. The maximum normalized shear production occurs
at x/W � 0.0177 (f � 1.77) with (Nks)max� 4.55, whereas
Nkb�ÿ2.02 ´ 10ÿ4. This gives a0 � 4.55, where the numerical
value for k1 is found to be 3.12 ´ 10ÿ5 and k2�ÿ2.02 ´ 10ÿ4,
see Fig. 6(b). Eq. (22) thus gives ytr � 0.3H as does the model.

Unlike with the PDH model, the value of jNkbjmax in the
outer region becomes smaller than (Nks)max in the near-wall
boundary layer with the PDH+D model. This implies that the
shear production has an extra capability to enhance turbulence
in the boundary layer besides to di�use energy towards the
neighboring outer region so as to saturate the turbulence de-
struction there. The results in Fig. 6 indicate that a reasonable

approximation for the buoyant source term can be achieved if
the normalized buoyancy production in the outer region is
suppressed below the normalized shear production in the near-
wall boundary layer. Under this condition, the model becomes
insensitive to the grid re®nement in predicting transition onset,
whose location depends now on the degree of damping of the
buoyancy term. A strong damping of this term means that a
large extra capability retains in the near-wall shear production
to enhance turbulence in the boundary layer, and thus trig-
gering an earlier transition, and vice versa. This is consistent
with the previous analysis.

For a natural laminar convection boundary layer ¯ow along
a vertical ¯at plate, k1 is a similarity parameter whose
streamwise dependence vanishes. Assuming there exists a near-
wall streamwise-independent maximum value for k1 next to the
transition regime in the upstream laminar stage where jk2j is
usually much smaller than a0, a condition for the total

Fig. 6. Near-vertical-wall normalized productions for the PDH + D

model at predicted transition onset location (ytr � 0.3H). (a) Distri-

butions of Nks and Nkb at y� 0.3H. (b) Numerical values for k1 and k2

at y� 0.3H.

Fig. 5. Near-vertical-wall normalized productions for the PDH model

at predicted transition onset location for 120´120 grid (ytr � 0.38H).

(a) Grid-dependence of Nks and Nkb at y� 0.38H. (±±±) Nks

(120 ´ 120), (á á á á á á á á á) Nkb (120 ´ 120), (± ± ±) Nks (160 ´ 160),

(- � - � -) Nkb (160 ´ 160). (b) Numerical values for k1 and k2 at

y� 0.38H with a 120 ´ 120 grid.
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normalized production a0 to trigger transition at the desired
location (ytr/H) is then

a0 � �Nks � Nkb�max �
Ra

Pr

ytr

H

� �1=2

k1: �27�
Eq. (27) appears to be a necessary condition for a two-equa-
tion LRN model to correctly predict the onset location of
transition regime in the natural convection boundary layer
¯ow along a vertical heated/cooled wall.

4.2. Mixed convection in a square cavity

For the cavity ¯ow with stable thermal strati®cation, the
foregoing computation showed that the SGDH performs rea-
sonably well in conjunction with a damping function by which
the grid-dependence problem inherent in this approach is re-
moved for transition prediction in the boundary layer. The
present proposal is essentially motivated for dealing with
natural convection ¯ows, in which transitional boundary lay-
ers exist and cause problems in numerical simulations. This,
however, should not constrain its relevance to other internal
turbulent buoyant ¯ows.

To further verify the performance of the model for other
thermally strati®ed ¯ows, a mixed convection ¯ow is consid-
ered in this subsection. The prediction was compared with the
experimental data by Blay et al. (1992). In this case, the air
¯ow is induced into a square cavity (H ´ W� 1.04 m ´ 1.04
m) through a slot (hin� 0.018 m) under the top wall and ex-
hausted through an opening (E� 0.024 m) on the opposite side
above the bottom wall. The supplied air has the same tem-
perature as that on the surfaces of the side and top walls,

Tin�Tw� 15°C. The bottom wall was heated to a constant
surface temperature of 35.5°C. Unlike in the closed cavity
¯ow, an unstable thermal strati®cation is set up near the
horizontal walls in this case. The supply conditions at the inlet
are: uin� 0.57 m/s, vin� 0 and kin� 0.00125 (m/s)2 (Blay et al.,
1992). The dissipation rate of k is given by ein� cl k

3=2
in /(0.5 hin).

The inlet x value is estimated by using the relation of x � e/k.
A 100 ´ 100 non-uniform grid was used to perform the com-
putation.

Fig. 7 shows the results comparing with the experimental
data at the vertical and horizontal mid-sections (at y�H/2 and
x�W/2, respectively). The LRN k-e models used in this work
generally give less satisfactory predictions than the LRN k-x
models do. The mean velocity is over-predicted by the AKN
model, and the LB model over-estimates both the temperature
and the turbulence energy. None of the LRN k-e models gives
overall reasonable predictions for the turbulent kinetic energy.
All the models over-predict the mean velocity near the wall,
with the result from the PDH model closest to the experiments.
The PDH model produces satisfactory predictions for k in
near-wall regions. The turbulence energy in the recirculating
region predicted by the WX model agrees well with the ex-
perimental data, although this model signi®cantly under-pre-
dicts the near-wall k level.

As shown in Fig. 7, introducing the damping function fG

into the PDH model (the PDH+D model) produces nearly
same distributions for the mean quantities as the PDH model
does. The turbulent kinetic energy is, however, slightly over-
estimated in the near-wall region. In general, the prediction
obtained with the PDH+D model is satisfactory and very
similar to that computed with the PDH model.

Fig. 7. Comparison of di�erent models for the mixed convection ¯ow in a square cavity. (- � - � -) AKN model, (- � �-) LB model, (á á á á á á á á á) WX

model, (± ± ±) PDH model, (±±±) PDH + D model, (s) Experiment. (a) Mean velocity at y�H/2. (b) Mean velocity at x�W/2. (c) Mean tem-

perature at y�H/2. (d) Mean temperature at x�W/2. (e) Turbulence energy at y�H/2. (f) Turbulence energy at x�W/2.
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5. Conclusions

The performance of LRN k-x models was investigated for
predicting buoyancy a�ected convection ¯ows in cavities
through comparisons with LRN k-e models and with experi-
mental data. To remove the grid-dependence problem in
transition prediction for cavity ¯ows, the simple SGDH model
was used in conjunction with a damping function as proposed
in this work. Using the present approach in the LRN k-x
model, the rationale for modelling the transition onset in the
natural convection boundary layer ¯ow was analyzed.

For the natural convection ¯ow in a tall cavity at a mod-
erate Rayleigh number, Ra � 5 ´ 1010, all the LRN k-e and
k-x models considered exhibit strong sensitivity to grid re-
®nement in predicting the transitional boundary layer ¯ow
along the vertical wall. Re®ning grid leads to a delayed tran-
sition onset and erroneous results in the predictions. When the
grid is re®ned su�ciently, these models eventually return a
laminar solution. None of the models is able to produce a grid-
independent solution. It was detected that the grid sensitivity
originates from the buoyant source term, Gk , in the k-equation.

Accounting for the buoyant e�ect on turbulence evolution
in the boundary layer, the mechanism for predicting transition
onset with the k-x model was analyzed through some argu-
ments on the net productions per unit dissipation term in the
turbulent transport equations by means of a similarity trans-
formation. It was shown that the height of transition onset
along a heated vertical wall is inversely proportional to the
Rayleigh number. For the cavity ¯ow considered, it was found
that transition occurs as the near-wall maximum production of
k is brought up to 4±5 times the dissipation.

Using the SGDH model alone, the buoyancy-related term
in the k-equation is over-ampli®ed (with negative values) in the
neighboring outer region of the boundary layer before transi-
tion occurs. Re®ning grid will reinforce this over-ampli®cation.
The buoyant source term plays a signi®cant role as an energy
destruction term in the outer region. The near-wall shear
production di�uses energy towards the outer region so as to
compensate for this destruction. On the other hand, extra
shear production is needed to enhance the turbulence in the
boundary layer and to trigger transition. If the model over-
ampli®es (negatively) Gk so that the capability of the shear
production cannot become large enough to accommodate the
compensation, the turbulence evolution in the boundary layer
will not go further, or even the local maximum production
may be reduced below a certain level necessary to induce
transition. As a result, the transition onset is delayed, or is
suppressed at all.

The over-ampli®cation for Gk can be eliminated by using a
damping function in the SGDH. When the normalized buoy-
ant production (negative), Nkb, in the outer region is reduced
so that jNkbjmax is generally smaller than (Nks)max in the
boundary layer, the shear production will then possess extra
capability to enhance turbulence and lead to a transition onset
in the boundary layer as desired. A well-behaved damping
function was devised, which is able to appropriately suppress
the capacity of Gk for absorbing too much turbulence energy
from the boundary layer to the outer region. By means of this
approach, the grid-independent solution can be asymptotically
achieved. In addition, the use of the damping function enables
the rendering of a correct asymptotic behavior for Gk near the
vertical walls.

The present method is able to produce reasonable predic-
tions for the cases considered and remove the undesirable grid-
dependence problem in transition prediction. For the ¯ow with
unstable thermal strati®cation, it was found that the use of a
damping function has insigni®cant consequence on the pre-
diction as compared with that produced by the same model

without employing the damping function. The present ap-
proach is expected to be applicable also for other LRN two-
equation models, e.g. LRN k-e models, when they are used to
handle similar ¯ow situations.

Appendix A

The damping functions for the LRN turbulence models
used in this work are given below.

The Lam±Bremhorst model (LB model)

fl � �1ÿ exp �ÿ0:0165Ry��2 1� 20:5

Rt

� �
;

f1 � 1� 0:05

fl

� �3

; f2 � 1ÿ exp �ÿR2
t �:

The Abe±Kondoh±Nagano model (AKN model):

fl � 1ÿ exp ÿ Re

14

� �� �2

1� 5

R0:75
t

exp ÿ Rt

200

� �2
" #( )

;

f1 � 1:0;

f2 � 1ÿ exp ÿ Re

3:1

� �� �2

1

(
ÿ0:3 exp ÿ Rt

6:5

� �2
" #)

:

The Wilcox model (WX model):

fl � 0:025� Rt=6

1� Rt=6
; f1 � 0:1� Rt=2:7

�1� Rt=2:7� f
ÿ1
l ;

fk � 0:278� �Rt=8�4
1� �Rt=8�4 :

The Peng±Davidson±Holmberg model (PDH model):

fl � 0:025� 1ÿ exp ÿ Rt

10

� �0:75
" #( )

� 0:975

(
� 0:001

Rt

exp ÿ Rt

200

� �2
" #)

;

f1 � 1� 4:3 exp ÿ Rt

1:5

� �0:5
" #

;

fk � 1ÿ 0:722 exp

"
ÿ Rt

10

� �4
#
:

In the above damping functions, Rt is the turbulent Reynolds
number, Rt� k2/(em) for the k-e model, and Rt� k/(xm) for the
k-x model. The quantities Ry and Re are de®ned as: Ry� k1=2y/
m and Re� (me)1=4y/m, where y is the normal distance to the wall
surface.
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